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Abstract—A peer-to-peer (P2P) file sharing system provides a platform
that enables a tremendous number of nodes to share their files. Retriev-
ing desired files efficiently and trustworthily is critical in such a large
and jumbled system. However, the issues of efficient searching and
trustworthy searching have only been studied separately. Simply com-
bining the methods to achieve the two goals doubles system overhead.
In this paper, we first study trace data from Facebook and BitTorrent.
Guided by the observations, we propose a system that integrates a
social network into a P2P network, named Social-P2P, for simultaneous
efficient and trustworthy file sharing. It incorporates three mechanisms:
(1) interest/trust-based structure, (2) interest/trust-based file searching,
and (3) trust relationship adjustment. By exploiting the social interests
and relationships in the social network, the interest/trust-based structure
groups common-multi-interest nodes into a cluster and further connects
socially close nodes within a cluster. The comparably stable nodes in
each cluster form a Distributed Hash Table (DHT) for inter-cluster file
searching. In the interest/trust-based file searching mechanism, a file
query is forwarded to the cluster of the file by the DHT routing first. Then,
it is forwarded along constructed connections within a cluster, which
achieves high hit rate and reliable routing. Moreover, sharing files among
socially close friends discourages nodes from providing faulty files be-
cause people are unlikely to risk their reputation in the real-world. In the
trust relationship adjustment mechanism, each node in a routing path
adaptively decreases its trust on the node that has forwarded a faulty
file in order to avoid routing queries towards misbehaving nodes later
on. We conducted extensive trace-driven simulations and implemented
a prototype on PlanetLab. Experimental results show that Social-P2P
achieves highly efficient and trustworthy file sharing compared to current
file sharing systems and trust management systems.

Index Terms—P2P networks, Online social networks, File sharing.

1 INTRODUCTION
Peer-to-peer (P2P) systems are widely used in file shar-
ing applications, such as BitTorrent. More than 50% of
the files downloaded and 80% of the files uploaded on
the Internet are through P2P networks [1]. P2P file shar-
ing systems attract millions of users. Due to the large-
scale of the P2P systems, efficiently locating a desired file
has been an open problem for many years. Considering
the numerous users without preexisting trust relation-
ships in the P2P open platform, providing trustworthy
file sharing has become another important issue. Indeed,
many users found themselves downloading the wrong
files due to misleading file names and descriptions. Peers
with malicious intent upload faulty files, defined as
tampered files or files with malicious code (e.g., Trojan
horses and viruses).
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The research on the issues of efficient and trustworthy
P2P file searching has been conducted separately.
Although many methods have been proposed to
enhance the efficiency or trustworthiness, the individual
methods are not efficient by themselves. In order to
improve the search efficiency, some works cluster the
nodes with the same interest to increase file hit rate [2]–
[14]. Since these methods cluster nodes with a single
interest, a node with multiple interests needs to maintain
multiple clusters, which generates a high overhead for
cluster maintenance and inter-cluster searching. Also,
most of the previous approaches depend on the contents
in users’ local storage to infer their file interests. They are
not only costly but also unable to retrieve the complete
interests of a user with insufficient stored contents, such
as new users or the users that have deleted shared files.
A widely-used solution for trustworthy file sharing is
to employ a cyber-trust management system [15]–[20],
in which each node rates service providers based on
the service quality. However, accumulating sufficient
ratings for calculating an accurate trust may take a
long time. Also, periodical trust updates produce a
high overhead. Currently, the only approach to achieve
both efficient and trustworthy P2P file searching is to
directly combine a system for high search efficiency and
a cyber-trust management system. In this way, all nodes
need to maintain structures for two systems, which
would double the cost, thus making the high overhead
problem even more severe. Therefore, a system that can
simultaneously provide both efficient and trustworthy
file sharing with low overhead is greatly needed.

In this paper, we propose a system that integrates a
social network into a P2P network, namely Social-P2P,
to simultaneously achieve efficient and trustworthy P2P
file sharing by leveraging social interests and relation-
ships. Two facts lay the foundation for this work. First,
people usually share files that they are interested in [11].
Interests indicated by a user himself in his profile can
more accurately reflect the complete interests of the user.
Second, users are unlikely to provide faulty files to their
socially close friends because it will impair their social
relationships with others and degrade their reputation in
their social communities in the real world. Thus, by map-
ping the P2P cyber network to the social network and
restricting cyber services (e.g., file sharing and message
routing) between socially close nodes, misbehaviors (i.e.,
providing faulty files and rejecting forwarding messages)
can be discouraged.

In this paper, we first study trace data from Facebook
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and BitTorrent. We gain a number of observations (O):
O1: Some interests are highly correlated. That is, given
a pair of correlated interests A and B, if a person has
interest A, (s)he is very likely to also have interest B.
O2: An online social network user has different contact
frequency with different users.
O3: Friends in an online social network (users with
direct social network connections) usually have very
close social relationships in their real life.
O4: A P2P file sharing system possesses a certain percent
of comparably stable nodes.
O5: The popularity distribution of interests can be mod-
eled as a Zipf distribution; most of the file queries are
for a small percent of file interests.

Guided by these observations, we develop the follow-
ing three components for Social-P2P:

(1) Interest/trust-based structure construction. It
groups common-multi-interest nodes into an interest
cluster (O1), and forms comparably stable nodes into
a Distributed Hash Table (DHT) to connect clusters for
efficient inter-cluster data sharing (O4). Within each
interest cluster, nodes are connected with their socially
close nodes as P2P overlay neighbors (O3). Furthermore,
Social-P2P uses anonymous routing to prevent malicious
nodes from selectively attacking socially distant nodes
and protects the privacy of the nodes.

(2) Interest/trust-based file searching. The trustwor-
thiness between nodes is weighted and a node tends
to forward a file query to trustworthy neighbors (O2).
Since higher popularity files have more file copies being
shared in the system, random walk is employed for
high hit rate in intra-cluster file searching considering
higher popular files have more copies in the system (O5).
We further propose routing algorithms to enhance the
random-walk based routing.

(3) Trust relationship adjustment. Each node in a
routing path decreases its trust on the next hop when a
faulty file is retrieved in order to avoid routing queries
towards misbehaving nodes later on (O2).

With these three components, Social-P2P achieves
highly efficient and trustworthy file sharing with low
overhead. We present the details below.

(1) High efficiency: Clustering common-multi-interest
nodes enables nodes to quickly find files in its own
cluster. The higher-level DHT enables efficient inter-
cluster search, which helps nodes to find files outside
of their interests quickly.

(2) High trustworthiness: Confining services between
socially close nodes discourages nodes from providing
faulty services. Trust-based random walk can ensure a
query message be forwarded among trustworthy nodes.
The trust decrease upon misbehavior can quickly isolate
misbehaving nodes. The anonymous routing further re-
inforces the trustworthiness of file sharing.

(3) Low overhead:
• Low overhead in structure maintenance. Comparatively

stable nodes form a DHT and other dynamic nodes
constitute an unstructured P2P by only connecting
to their socially close nodes, leading to low P2P
overlay maintenance without frequent DHT main-
tenance in node dynamics.

• Low overhead in efficient file sharing. Clustering
common-multi-interest nodes rather than common-

single-interest nodes reduces the cluster mainte-
nance overhead, enhances file search hit rate with-
in clusters, and reduces the inter-cluster searching
overhead.

• Low overhead in trustworthy file sharing. Social-P2P
does not need to periodically accumulate ratings
of each node to calculate its trust. Each node only
needs to maintain its neighbors’ trusts, resulting in
low overhead for trust management.

As far as we know, this is the first work that si-
multaneously considers both efficient and trustworthy
file querying with low overhead in P2P networks. Like
some previous P2P works [21]–[26], Social-P2P has a
central server, which is mainly used to handle the social
network functions and assistance work. The remainder
of the paper is organized as follows. Section 2 gives
an overview on the existing file search systems and
reputation systems. Section 4 describes the design of
Social-P2P. The performance evaluation is presented in
Section 5. Section 6 concludes the paper.

2 RELATED WORK
Efficient file sharing. Numerous methods including
locality-aware searches [5], [6] and social network based
searches [7]–[12], [14], [27] have been proposed in
hopes of increasing the search efficiency in P2P systems.
Searching based on social networks can be classified
into two categories: unstructured networks and DHTs.
In the unstructured network based search, Carchiolo et
al. [27] and Lei et al. [10] proposed to gradually cluster
nodes into the same group if they query or reply for
the same resources. Fast et al. [11] proposed to use
hierarchical Dirichlet filtering to extract user preferences
to musical styles from their music libraries. They cluster
the available files in the network based on user interests.
Although these algorithms can improve the basic search
algorithm, since the nodes with the same interests
can be grouped only after they have interactions, the
clustering process takes a long time. By relying on the
social interest information, Social-P2P can quickly and
accurately cluster nodes with similar interests.

In the category of DHTs, Li et al. [12] proposed Cyber,
in which the nodes are associated with certain com-
munities based on their interests. Cyber builds a DHT-
based index on the keywords of items. When a node
queries for an item, the DHT-indexed peer responsible
for the queried keyword returns the items that match
the interests of the community the requester belongs to.
Zhang et al. [14] proposed to improve search in unstruc-
tured P2P overlay networks by building a partial index
of globally unpopular data and non-major interest data
based on a DHT. The index can assist peers in finding
other peers with similar interests and provide search
hints for a data difficult to be located by exploring peer
interests. The current DHT-based social network enables
fast node clustering but suffers from high system main-
tenance overhead in churn. Meanwhile, single interest-
based node clustering requires each node to maintain
several clusters, which leads to high cluster maintenance
overhead. In Social-P2P, each node only needs to main-
tain a single multi-interest cluster. Moreover, only com-
paratively stable nodes in these clusters form a stable
DHT and the dynamic nodes only maintain a number
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of friends in the unstructured cluster. Thus, Social-P2P
generates a low system maintenance overhead.
Trust management. Numerous reputation systems [13],
[15]–[20] have been proposed to increase the trustwor-
thiness of the P2P systems. The basic idea is to let
peers rate their service providers after each receiving
the service. The accumulated rating of a node is used
to represent its trustworthiness. However, accumulating
sufficient ratings to calculate an accurate reputation val-
ue takes a long time. Also, managing the ratings between
nodes and calculating the reputation value for each node
generate high overhead. Social-P2P takes advantages of
social trust relationships between people to increase the
trustworthiness of file sharing at lower overhead.

Marti et al. [13] investigated how existing social net-
works could benefit P2P data networks by leveraging
the inherent trust associated with social links for DHT
routing. This work only deals with misrouting prob-
lems, while Social-P2P targets more general file trust-
worthiness problem. Galuba et al. [28] leveraged social
networks to avoid free-riders in BitTorrent. Frey [29]
addresses the need for trust in user-centric applications
by proposing two distributed protocols that combine
interest-based connections between users with explicit
links obtained from social networks.

3 TRACE DATA ANALYSIS
In this section, we analyze Facebook trace data crawled
by us and BitTorrent trace data from the Graffiti Network
Project [30]. The Facebook trace data covers the interests
of 32,344 users in the South Carolina Region in June,
2010. To crawl the data, we selected two users with
no social relationship in Clemson University as seed
nodes and built a friend graph using breadth first search
through each node’s friend list. We skipped the users
whose personal information cannot be accessed. Finally,
we drew a social network graph, where a vertex is a
user and a link means these two users are friends. The
average number of friends per node is 32.51 and the
average path length of the graph is 3.78. The BitTorrent
user traffic was collected during a three week period (Oct
28, 2008-Nov 21, 2008) involving 3,570,588 nodes.

Interest clustering. We parsed the interest information
from the users’ profiles in Facebook. We removed the
interests irrelevant to file sharing (e.g., “sleep” and
“shopping”). We classified the remaining interests (e.g.,
“action movie”, “classic music” and “sports”) into 18
categories. We plotted a graph G(V,E) to show the
relationship among the 18 interests. The vertices V are
the interests. A link E between V1 and V2 indicates the
co-existences of both V1 and V2 in all profiles of t persons,
where t is the threshold of the number of persons.

Figure 1 plots the graphs with threshold t=100 and
t = 500, respectively. When t = 100, the interests are
densely connected. When t = 500, several interests are
still clustered, while two interests are isolated. Also, the
number of interests in one interest cluster varies.
Observation(O)1: Some interests are highly correlated.
That is, given a pair of correlated interests A and B, if
a person has interest A, (s)he is very likely to also have
interest B.
Inference(I)1: Instead of clustering the nodes based on
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Fig. 1. The clustering feature of interests.

each interest, which leads to high overhead, clustering
common-multi-interest nodes can improve file retrieval
efficiency and reduce cluster maintenance overhead.
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Fig. 3. Posting distribution.

Closeness between online users. We analyzed the
reply rate of the posts on user comment walls and
pictures in Facebook. If user B posted M comments to
user A, and A replied m comments, we define m/M
as the reply rate of user A to his friend B. We then
calculated the average value of each user’s reply rates
to his/her friends and used it to represent the closeness
among users. Figure 2 shows the distribution of the
average reply rates of all users to their friends. It shows
that a user has a reply rate of less than 0.7 to almost 90%
of its friends on average. That is, for only 10% of friends,
a person replies more than 70% of their comments. The
results indicate that users treat different persons in an
online social network differently. In order to show that
the behavior of replying comments is driven by social
closeness of nodes rather than the contents of the com-
ments (e.g. interesting comments), we further investigate
the comment posting behaviors between people. Given
a posting from user A to user B, we call it posting
for a familiar person if B has posted comments on
A’s wall/picture and A replied B’s comment before.
Otherwise, we call it posting for an unfamiliar person.
We calculated the percent of postings for (un)familiar
persons for each user, and plotted the average values in
Figure 3. We see that 83% of a person’s postings are for
familiar persons. Combing these results, we observe:
O2: A user in the online social network has different
contact frequency with other different users.

We reasonably assume the user contact frequency
indicates the trust between them, we can infer that:
I2: The trust relationship between nodes should be
weighed. Retrieving files from trustable nodes can in-
crease the trustworthiness of the retrieved files.

Figure 4 further shows the social relationship between
the users. We observe that:
O3: Friends in an online social network usually have
very close social relationships in their real life.
I3: Requesting services (e.g., providing files and query

3
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routing) from socially close nodes can enhance the trust-
worthiness of received services, since people do not want
to ruin their reputation in real life.
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Fig. 4. Social relationship.
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Fig. 5. Node churn rate.
Node stability. We now analyze the distribution of

node stability in the BitTorrent file sharing system. Fig-
ure 5 shows the cumulative distribution function (CDF)
of the length of time that nodes remain online.
O4: A P2P file sharing system possesses certain per-
centages of comparably stable nodes (15%) and highly
dynamic nodes (20%).
I4: Building a DHT using all nodes in the system is not
suitable for P2P file sharing due to high churn. Forming
the comparatively stable nodes into a DHT to assist other
nodes in file retrieval can enhance file sharing efficiency.

File interest popularity. The number of torrents of
a file category (i.e., interest) represents its popularity.

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384

1 4 16 64 256

N
u

m
b

er
 o

f 
to

rr
en

t

Rank of an interest

Measured Torrents
Zipf

Fig. 6. File popularity dis-
tribution.

We ranked 505 interests
based on the number of tor-
rents. The interest with rank
1 has the largest number of
torrents. Figure 6 shows the
number of torrents of an in-
terest versus its rank in the
log-log scale. It also includes
a line for the best fit Zipf
distribution.
O5: The popularity distribu-
tion of interests can be modeled as a Zipf distribution.

In the random walk file searching algorithm, a node
randomly selects one or several neighbor nodes (except
the node which forwards the message) as the next hops
for message forwarding.
I5: In the case that higher popularity files have more
file copies being shared in the system, the random walk
file searching algorithm can achieve high hit rate in
retrieving popular files.

4 THE DESIGN OF SOCIAL-P2P
The above observations and inferences motivate us to

integrate a social network into a P2P network for efficient
and trustworthy file retrieval. Thus, we propose Social-
P2P, which leverages the social closeness and interest
information in the social network to enable nodes with a
social relationship and multiple common interests share
files between each other.

Figure 7 shows the system structure of Social-P2P.
Based on I1, we group common-multi-interest nodes to-
gether into an interest cluster. Based on I2 and I3, within
each interest cluster, nodes are connected based on their
social network links. The trustworthiness between nodes
is weighed and a node tends to forward a file query to
higher trustworthy neighbors in file searching. Based on
I4, we select a comparably stable node as an ambassador
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Fig. 7. An overview of the Social-P2P system structure.
for its own cluster, and form all ambassadors to a DHT
for efficient inter-cluster data sharing. Like BitTorrent,
Social-P2P enables nodes to share their downloaded files
with others. Thus, based on I5, a node uses random walk
in intra-cluster searching.
4.1 Interest/Trust-based Structure Construction
Social-P2P numerically represents interests of a node
based on the Vector Space Model (VSM) [31]. The inter-
ests are predefined based on the particular application.
For example, for a general-purpose file sharing system
such as BitTorrent, the interest pre-determination can be
like that in Yahoo! Answers and YouTube. A file sharing
system on a campus can use the major names as the
interests. It provides an interest dictionary vector, which
consists of all the interests (m). Each node compares
its own interests with the interest dictionary vector as
shown in Figure 8. If it has an interest in the vector,
the corresponding position of the vector is set to 1.
Otherwise, the position is set to 0. Finally, each node
i has an interest vector vi, which is a binary vector with
m dimensions.

… …Interest 
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4123 1 1 0 1 0 0 1… …

Fig. 8. Example of an interest vector.
We use the Hilbert curve technology [32] to clus-

ter common-multi-interest nodes with similar inter-
est vectors. The Hilbert curve converts a multi-
dimensional interest vector to a one-dimensional Hilbert
value, so that the closeness of the Hilbert val-
ues indicates the closeness of the interest vectors,
i.e., the similarity between nodes’ interests. We use
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Fig. 9. Hilbert clustering
vector.

Hmax to represent the
theoretical largest Hilbert
value, which depends
on the vector dimension.
Assume we build n clusters
with ID∈[0, n − 1]. In the
case that the Hilbert values
are uniformly distributed in
the space of [0, Hmax − 1],
then [0, Hmax − 1] is uniformly divided to n intervals
as shown in Figure 9. A node with Hilbert number
∈[ (b−1)·Max

n , b·Max
n ) should be in cluster (b − 1). In the

case that the Hilbert values are not uniformly distributed
in the space of [0, Hmax − 1], we can divide the space
[0, Hmax − 1] to intervals based on the density of the
distribution of Hilbert values. A node can identify its
cluster according to its generated Hilbert value. Other
clustering methods [33], [34] can be used to improve the
clustering accuracy but at the cost of higher overhead.
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In our future work, we will study the appropriate
length of the vector and the granularity of an interest
for effective common-multi-interest clustering.

Next, we study the distribution of the number of
nodes in a cluster. Using the Hilbert clustering mech-
anism, we clustered the users in the Facebook trace data
based on their interests for comparison. We also used the
mechanism to cluster nodes with randomly distributed
interests. Recall that the Facebook trace has 18 interests.
To generate the random distribution, we assigned each
node a certain number of interests randomly selected
from the 18 interests (the number is randomly picked
from [0,18)), and clustered the nodes based on their
Hilbert values. We ranked the clusters by the number
of nodes in each cluster. The cluster with the largest
number of nodes has the highest rank. Figure 10 shows
the distribution of the number of nodes in each cluster
versus the cluster rank. It shows that the number of
nodes in each cluster conforms to a power law distri-
bution, while the number of nodes in random interest
distribution exhibits a small variance. The highly skewed
distribution indicates that the interests of people are not
randomly distributed but have certain correlation, which
is consistent with Figure 1.

Figure 11 shows the average, maximum and mini-
mum number of social friends of each person (degree)
in its interest cluster. The average degree ranges from
[2.1,18.2], the maximum degree ranges from [6,223] and
the minimum degree ranges from [0,1]. Therefore, in
most cases, a node has friends in its own common-multi-
interest cluster. The average number of friends of each
node in our data set is 32.51. Therefore, most nodes have
friends in other clusters. Thus, we observe:
O6: In most cases, a node has friends not only in its own
common-multi-interest cluster but also in other clusters.
I6: In most cases, each node can establish links with its
friends in its own interest cluster, and can ask a friend in
another interest cluster to forward a query to that cluster.

Each cluster of common-multi-interest nodes has an
ambassador, which is a comparably stable node and is re-
sponsible for the inter-cluster file searching. Like current
online social networks, Social-P2P has a server managing
node registration and ambassadors. The principle of
stable node selection is that the longer time a node is
online daily in a P2P network, the higher probability
it will stay in the network [35]. Initially, the server is
the ambassador for each cluster. When a node’s online
time exceeds a pre-defined threshold, it reports to the
server for the promotion to an ambassador. The server
designates the node as the ambassador for the cluster
if the server is the ambassador. Otherwise, the node
becomes a backup ambassador. When an ambassador
departs voluntarily, it notifies the server. In the over-
lay stabilization, when another ambassador notices the
abrupt departure or failure of an ambassador, it notifies
the server, which selects an alive backup ambassador to
replace the leaving ambassador.

Each user is required to submit his interest information
and social information in registration. Interest information,
such as leisure preferences and religious beliefs, is used
for common-multi-interest node clustering. Social infor-
mation, such as residence, education and employment,
is used to build social links between the nodes within
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a cluster. After a node registers, it calculates its Hilbert
number, and then gets the ambassador(s) of its interest
clusters from the server. Based on the social information
of the node, servers recommend friends to the node,
such as classmates in the same college, colleagues in the
same company and etc. The node selects familiar friends
from the recommendation and adds them into its social
friend list. It builds overlay links to the friends belonging
to its interest clusters. These connected friends become
its multi-interest neighbors. If the number of friend
nodes is less than a threshold Thd, the node requests
its friends to recommend their trustworthy friends in
the same interest clusters as itself. The node connects to
the recommended nodes as overlay neighbors in the P2P
layer based on the friends-of-friends (FOF) relationship.
For example, in Figure 7, node A connects to node C
recommended by its friend B as P2P overlay neighbor.
As a result, a node’s overlay neighbors in Social-P2P
include its 1-hop friends and 2-hop FoFs. Querying files
from these neighbors ensures trustworthy file sharing,
since users possessing a social network primarily interact
with 2 to 3 hop partners in real life [36]. If a node has
already registered in the system before, when it logs in,
it directly connects to its previous overlay neighbors.
When a node leaves the system, it needs to notify its
neighbors and the server. After being registered, users
can add or delete interests in their profiles later on. Then,
their interest clusters are updated accordingly.

4.2 Interest/Trust-based File Searching
4.2.1 Intra-cluster routing algorithm

A queried file has one or multiple interests. If at
least one query interest belongs to the file requester’s
interests, it uses the intra-cluster routing algorithm that
forwards a query to trustworthy nodes. We define the
social distance between two nodes as the number of hops
in the shortest path between them in the social network.
As indicated in [37], a reduction in social distance sig-
nificantly increases trust between nodes. Thus, we use
an exponential model to reflect the relationship between
trust and social distance. Specifically, the trust weight of
node i on j denoted by w(i, j) is calculated by:

w(i, j) = e(−li,j−1), (1)
where li,j is the social distance between nodes i and j
in the social network and “-1” is used for normalization
so that the weight of the closest nodes is 1.

Each node employs random walk search, in which a
query message is forwarded to one or several randomly
chosen P2P network neighbors at each hop until the
desired file is found. To avoid repetitive searching paths,
a node does not further forward a query if it has received
this query previously. A node’s P2P network neighbors
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are trustworthy since they are friends or FoFs of the
nodes in their social networks. Friends should have
higher probability than FoFs to be chosen as forwarders
because they are relatively more trustworthy. Thus, for
a node i with d P2P network neighbors, the probability
of a neighbor j being selected from the neighbor set Ni
of i as the message forwarding node is

p(i, j) = w(i, j)/
∑
j∈Ni

w(i, j). (2)

The message is randomly forwarded within the cluster
with a time to live (TTL). After a forwarding, the TTL of
the message is reduced by 1. The query process is ter-
minated when TTL=0 or when the desired file is found.

4.2.2 Inter-cluster routing algorithm
Inter-cluster querying is needed when users need to

query files outside their interests or when the query in
the current cluster cannot be satisfied. In this case, using
the way described in Section 4.1, based on the multiple
interests of the queried file, the requester generates a
query vector as generating its interest vector: calculate
its Hilbert value and get the ID of the cluster mapped
to the Hilbert value. Since the cluster ID represents the
common-multi-interests of the nodes in the cluster, the
mapped cluster is the destination cluster that holds the
requested file. According to I6, the requester first asks
its friends in its friend list whether they belong to the
destination cluster. If yes, the file request is sent to the
cluster through the friend. Otherwise, the requester relies
on the ambassador in its current cluster to forward the
file request. In this way, the traffic from ambassador can
be greatly reduced. Using DHT routing, the request is
forwarded to the ambassador in the destination cluster.
After the file request arrives at the destination cluster, it
is forwarded by the intra-cluster routing algorithm.

Two similar vectors may be divided into two neighbor-
ing clusters. For example, a vector with Max

n has cluster
ID=1, while a vector with Max

n − 1 has cluster ID=0.
Therefore, if a query cannot be satisfied within the desti-
nation cluster, it is forwarded to the neighboring clusters
in both clockwise and counter-clockwise direction with
a Cluster TTL (CTTL). Similar to inter-cluster routing, a
node tries to send the query via its friends in the social
network rather than ambassadors in the DHT. The nodes
holding the query with TTL= 0 and CTTL 6= 0 further
forward the request to their neighboring clusters. If the
CTTL expires, the query message is sent to the server to
locate the file holder. Each node in the system reports
files that are seldom queried by others to the server in
order to guarantee the file availability. Such files are the
files with visit rates lower than a predefined threshold.

4.2.3 Enhanced intra-cluster routing algorithm
In order to further improve the file search speed and ef-

ficiency, especially in a large-scale network, we enhance
the random-walk routing algorithm using content based
routing tables (CRTs). Table 1 shows an example for the
CRT. In the table, the “Content Index” refers to the hash
value of a file explained in Section 4.2.1, the “Next Hop
Node” represents the ID of the neighbor node that can
lead to the requested file with the “Content Index”, and
the “# Hops” denotes the number of remaining hops to
reach the requested file.

TABLE 1
Content Based Routing Table

Content Index Next Hop Node # Hops
1001001 24 3
1110110 12 5
1010101 23 1
· · · · · · · · ·

In the enhanced routing algorithm, when a node re-
ceives a file request, it first checks whether there is an
entry for the requested file in its CRT. If yes, the node
further checks whether the trust weight of the next hop
node is larger than a predefined threshold, which is high
enough to determine that the node is trustable. If yes, the
request is forwarded to the node. If there is no entry for
the requested file or the next hop node is not trustable,
the original random-walk routing algorithm is used.

We then introduce the creation and maintenance of
the CRTs. In the random-walk routing, each request
records the nodes it has traversed in routing. When a
request successfully locates the requested file, the record-
ed information is forwarded back along the original
routing path. Each node in the path then updates its CRT.
Specifically, it first checks whether there is an entry for
the content index of the requested file. If not, the entry
is added directly with the associated next hop and the
number of remaining hops. Otherwise, it checks whether
the new route has fewer remaining hops to reach the
file. If yes, the entry is updated with the new “Next
Hop Node” and “# Hops”. Figure 12 demonstrates an
example of the CRT update with the path information
of three successful requests. When a better routing path
is discovered, the corresponding entry is updated. Note
that such a CRT update will not break the trust property
of the routing protocol due to two reasons. First, the
new routing path is along trustable nodes as indicated
in Section 4.2.1, so the new path is trustable. Second,
when using the next hop in a CRT, a node needs to make
sure the next hop is trustable. The path information of
a successful request is still forwarded back for nodes
to verify the activeness of the entries in its CRT. To
continually discover better routes, each requester can
periodically use the random walk algorithm.

Content 
index

Next hop 
Node

#
Hops

11001 5 8
10011 12 11
10101 7 6
01101 9 3

Content 
index

Next hop 
Node

#
Hops

11001 5 8
10011 8 6
10101 7 4
01101 9 3

11001 4 9
10011 8 6
10101 7 4

Original CRT Updated CRT
Received path
information

Fig. 12. Update of the content based routing table.
When a requester fails to find its requested content

following the CRT, which means the entries are outdated,
it sends a notification to all nodes on the path to delete
the corresponding entries. Since each content maintains
at most one entry in a CRT, the size of a CRT is bounded
by the number of contents. In the case of limited memory
resource, we can limit the size of the CRT by deleting the
entry with the oldest update time.

As random walk sends a query without direction, it
may lead to a long path. Letting all nodes along a long
routing path record the next hop would generate a high
overhead. The small world nature of social networks
indicates that two people can be connected through
social relationships by six steps on average. Also, nodes
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in an interest cluster (i.e., common-interest-nodes)
should have more tight connections. Thus, we expect
that a node in a cluster can find a file in another
node in the same cluster within no more than 6 hops.
Therefore, to reduce the CRT maintenance cost without
compromising the search efficiency, we propose an
advanced algorithm. It only lets nodes that are within
Nh (Nh ≤ 6) hops to the file holder update their CRTs
for a successful request. This algorithm eliminates the
unnecessary overhead for updating CRTs for long paths,
and also enables each node to provide efficient routing
guidance for most files. As a result, CRTs can lead the
request to the file holder quickly.

4.3 Trust Relationship Adjustment
Based on I3, Social-P2P confines the query traffic to the
socially close nodes in order to make sure that the query
can be successfully forwarded and the retrieved file is
trustworthy. The trust relationship adjustment algorithm
enables nodes to avoid forwarding messages to
malicious nodes in order to reinforce the trustworthiness
of the services in the system. Below, we use file provision
as an example for the service. Specifically, when a file re-
quester receives its queried file, if it finds that it receives
a faulty file, the node propagates a misbehaving node
notification back along the previous query path. Each
node i in the routing path adjusts the weight of its link to
the next hop on the path, so that it has lower probability
of forwarding a message to the misbehaving node. Since
a node located closer to a misbehaving node is more
likely to forward a query to it, it needs to reduce more
weight on the link to the misbehaving node, and vice
versa. Also, the number of hops between the querying
node and the misbehaving node in the path affects
the likelihood of the querying node to send a query to
the misbehaving node. With these considerations, we
designed Equation (3) for node i in a path to adjust the
weight of its link to the next hop j in the path:

w(i, j) = w(i, j)− α(
b

h
)
h
θ , (3)

where b is the number of hops from the querying node
to node i, h is the number of hops between the querying
node and the misbehaving node in the path, θ is a scaling
parameter and α is a weight parameter. Thus, the nodes
that are distant from the misbehaving nodes (small b)
reduce less link weights, and the nodes that are closer
to the misbehaving nodes reduce more link weights.
Like previous reputation systems [13], [15]–[20], we set
a threshold Thw which is a low weight value to identify
untrustworthy nodes. If w(i, j) is less than threshold
Thw, node i puts node j into the blacklist and removes
the P2P overlay link to j. Since it is possible that some
faulty files are sent out by some careless benign peers
who did not delete received faulty files from their shar-
ing folder, Social-P2P periodically forgives the occasional
misbehavior of nodes in the system in every Tu time
interval by increasing every node’s weight periodically:

w(i, j) = Minimum{(w(i, j) + β), 1}, (4)

where β > 0 is the weight increase value at every Tu.
Tu is relatively very long and β is very small. Therefore,
it needs a very long time for a node to get a maximal
reputation 1 through the refreshing. Also, the weight
decreasing speed of malicious nodes is much faster

TABLE 2
Parameter table

Social network topology Facebook trace
Number of interests 18
Number of clusters 30
Churn rate Figure 5
CTTL and TTL 3 and 100
Link weight threshold Thw 0.1
P2P node degree threshold Thd 3
Link weight update interval Tw 1000s
α, β, θ, Tu 0.05, 0.1, 3, 100s

than this refreshing speed. Therefore, during each time
interval, the variable w(i, j) still functions well.

5 PERFORMANCE EVALUATION
We have conducted trace-driven experiments using the
trace data from Facebook and BitTorrent on Planet-
Sim [38] and PlanetLab testbed [39]. We evaluated the
efficiency and trustworthiness of the Social-P2P system
in comparison with Partial Indexed Search (PIS) [14]
and PROSA [27]. PIS is a hybrid system that clusters the
nodes based on their major interests, and also forms the
nodes into a DHT to index the non-major interests and
globally unpopular files for file retrieval. PROSA is an
unstructured P2P system in which nodes that share the
same interests are virtually clustered together if they
have interacted before. The nodes use random walk to
locate interest clusters and to search for files.

We also compare the file searching trustworthiness
performance of Social-P2P with Pure-P2P and Eigen-
Trust [40]. Pure-P2P does not have any mechanisms
to guarantee file trustworthiness. EigenTrust is a trust
management system, in which every peer has a trust
manager to calculate its trust value based on others’
feedback. A node’s trust manager is the DHT owner of
the node’s ID. Each node sends the rating of the file
supplier to its trust manager after receiving a file.

Table 2 lists partial parameters used in the experi-
ments. Other parameters are derived from the trace data
from Facebook and BitTorrent. We generated 300,000
synthetic files according to the popularity distribution
shown in Figure 6, i.e., the numbers of files in each
interest follow the distribution in Figure 6. Each file is
represented by an ID and an interest. A file’s ID is unique
when it is generated, and its interest is selected following
the probability distribution derived from Figure 6, i.e.,
a file’s probability to belong to interest l is determined
as the portion of torrent for interest l in Figure 6. Each
file is assigned to a node randomly selected from nodes
whose interests match the file’s interest. The interests of
the nodes and the number of nodes were determined
based on our Facebook trace. The file querying rate is
derived from the BitTorrent trace. Figure 13 shows the
average querying rate of the nodes in the BitTorrent
trace data along with a line for power-law distribution.
We rank the nodes in terms of the number of queries
issued by the nodes. The node generating the most
queries is ranked first. We see that the querying rate
of nodes follows a power-law distribution. Thus, we
used a power-law distribution generator with scaling
exponent parameter k=-1.2 to generate a querying rate
within the range of [0.01,100] messages per simulation
cycle (i.e., simulated second), and randomly assigned
the rate to each node in the system. Since a node is
more likely to query files in its interests [11], for each

7



1045-9219 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2014.2359020, IEEE Transactions on Parallel and Distributed Systems

node, 90% of its initiated queries are for files in its own
interests and 10% are not. The churn rate distribution
of nodes follows that of Figure 5. After a node leaves
the system, it waits for tw and joins the system again.
tw is randomly selected from [1,10] simulation cycles.
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Fig. 14. Traffic distribution.
We primarily use the following six metrics for

performance evaluations:
(1) Percent of traffic: the percent of query messages
forwarded by different kinds of nodes (friends,
ambassadors and server) in a searching stage.
(2) Average query delay: the average delay of all file
queries.
(3) Query overhead: the total number of query forwarding
hops in file querying of all file queries.
(4) Maintenance overhead: the number of messages in
maintaining the system structure in churn.
(5) Overall overhead: the total number of messages
issued for file searching, system maintenance and trust
management.
(6) Victimized probability: the percentage of nodes
receiving faulty files.

We first conducted simulation on PlanetSim (Sec-
tion 5.1) and then used Planetlab for performance evalu-
ation in real scenario (Section 5.2). In both experiments,
we disabled the advanced CRT-based routing algorithm
proposed in Section 4.2.3. We evaluate its performance
separately in Section 5.3.

5.1 Performance Evaluation on PlanetSim
The number of nodes in the PlanetSim simulation was

set to 32,344, which is equal to the number of nodes in
our crawled Facebook trace. The duration of each ex-
periment is 50,000 simulation cycles. In each simulation
cycle, every node in the system sends out one query
message. All experiments have been conducted 10 times,
and the average values of the results are reported. In the
figures, “Social-P2P” denotes Social-P2P in which a node
sends 1 message for a query, and “Social-P2P-c” denotes
Social-P2P in which a node sends c messages for a file
query in the random walk file searching in Social-P2P.

5.1.1 Evaluation of File Sharing Efficiency
Traffic distribution. Figure 14 shows traffic distribution
of the queries in Social-P2P versus network size. In
this figure, “Intra” denotes the percentage of traffic in
intra-clustering searching. “Inter-1-hop” and “Inter-2-
hop” denote the percentages of traffic in inter-cluster
searching when the destination cluster is 1 and 2 cluster
hops away from the source cluster, respectively. The
number of cluster hops describes the distance between
two clusters measured by the number of clusters. A
cluster is 1 cluster hop away from its neighboring cluster.
The inter-cluster searching traffic when the destination

is > 2 cluster hops away and the traffic through the
server are included in “Other”. The figure shows that
about 70% of the queries can be satisfied by the nodes
within the same cluster. This implies that common-
multi-interests clustering can accurately cluster nodes
with similar multi-interests. We also see that 99% of
the queries can be satisfied within 2 cluster hops. This
is because the nodes in neighboring clusters also have
similar multi-interests. Therefore, these nodes are very
likely to satisfy the queries. This is the reason that there
is more traffic within clusters 1 hop away than clusters
2 hops away. The experimental results also show that
only 0.1% of the traffic is through the server, which
demonstrates the effectiveness of interest/trust-based
random walk and P2P file sharing in Social-P2P.

Figure 15 illustrates the distribution of the inter-cluster
traffic through friends, ambassadors and the server, re-
spectively. It shows that approximately 80% of the inter-
cluster queries are sent to the destination cluster through
friends, about 18% of the queries are forwarded through
ambassadors, and only 1% are through the server. This
result is consistent with O6 that a node has friends in
other clusters, which can help the node to forward its
query to the other clusters. Since a requester sometimes
cannot find a friend in the destination cluster, it resorts
to the ambassador for file searching. Due to the TTL,
sometimes an unpopular file cannot be discovered. This
is the reason that the server contributes to a slight
querying traffic.

Query delay. Figures 16 (a), (b) and (c) show the
query delay versus network size for queried files with
three different popularities, respectively. Popularity of a
file is reflected by the percentage of the nodes in the
system holding the file. Comparing the three figures, we
see that as the popularity of the queried file decreases,
the delay in Social-P2P and PROSA increases. Higher
popularity files have more copies in the system, hence
the probability that the files can be retrieved from its
neighbors is high, which results in a low query delay.
The query delay in PIS does not increase significantly
when file popularity decreases because for querying
unpopular files, PIS relies on the DHT, where the IDs of
all nodes holding a file are stored together in one node.
Thus, an unpopular file can always be located within a
limited number of hops. However, the additional DHT
structure generates high overhead for structure mainte-
nance. In contrast, for both Social-P2P and PROSA which
use random walk for file retrieval, as file popularity
decreases, the probability that a file is located near the
query node decreases, thus the query delay increases.

The figures also show that the query delay in PIS
and PROSA increase significantly with network size
while the query delay in Social-P2P increases slightly. In
PIS, the nodes inferred their interests from files in their
current folders and only main interests are used. For new
types of files and non-major interest files, it uses the DHT
for file retrieval. Since the average transmission hops
in the DHT increases as network size increases, query
delay also increases. In PROSA, the clusters are formed
based on the interactions between the nodes. In a larger
network, it takes longer time before the nodes can be
clustered. Also, nodes with the same interests may be
grouped to different clusters because of the limited in-
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Fig. 16. Delay versus network size.
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teraction range of nodes. Thus, the insufficiently accurate
clustering in PROSA leads to longer query delay.

Figure 16 (a) shows that for highly popular queried
files, the query delay exhibits PIS>PROSA>Social-P2P.
PIS only clusters the nodes based on their major
interests. However, popular files do not necessarily
match the major interests of the nodes. Therefore, PIS
needs to refer to the DHT for the file query. The O(log n)
query hops lead to high query delay. Two factors
contribute to the higher delay of PROSA than Social-P2P.
First, the clustering in Social-P2P is much more accurate
than PROSA. In Social-P2P, the nodes are globally
clustered based on their multi-interest information
in their personal profiles. The query can always be
satisfied within the cluster with high probability without
searching other clusters. In PROSA, the clustering is
based on the interaction history between the nodes.
Nodes with the same interests may form several clusters
because of the limited interaction range between them.
The inaccurate clustering leads to long query delay.
Second, Social-P2P has shorter inter-cluster query time.
Social-P2P uses a stable DHT to locate a destination
cluster. In contrast, the cluster localization in PROSA is
based on random walk, which needs more query time.

In Figure 16 (b), we see that for queried files with
median popularity, the query delay of PROSA increases
rapidly and exceeds DIS when the number of nodes is
30,000. This is because the lower popularity of a file leads
to a longer time for node clustering and intra-cluster
search in PROSA, and large network size exacerbates
the delay due to random walk. Social-P2P can accurately
cluster the nodes with similar interests. Therefore its
overall delay is lower than PIS. However, as shown in
Figure 16 (c), when file popularity is very low, the file
search delay of random walk in Social-P2P is long. PIS
has a short delay in a small-size network due to the small
size of DHT. As a result, Social-P2P generates higher
delay than PIS. PROSA leads to higher delay than others
because low popularity of the queried file leads to a
longer time for node clustering and intra-cluster search.

Figure 16 shows that Social-P2P-3 and Social-P2P-5
have the smallest transmission delay with different

popularities of the queried files. This is because sending
out more copies of the query messages can increase the
hit probability in Social-P2P. Therefore, for unpopular
files in the system, Social-P2P can reduce the query
delay by sending more query copies.

Query overhead. Figures 17(a), (b) and (c) show the
query overhead versus the network size for querying
files with three popularities. The figures show that as the
network size increases, the amount of system overhead
increases, which is the outcome of the increased average
query hops in the network.

Figure 17 (a) shows that the query overhead of PIS
is larger than all other systems for querying files with
high popularity. Due to the high popularity of the
queried files, other systems can find the files in the
neighbor nodes with high probability. However, DHT
routing in PIS leads to high routing overhead. In PROSA,
since the nodes are not well clustered initially, it takes
more hops to find a file than Social-P2P which are
well clustered. Social-P2P-3 and Social-P2P-5 produce
higher query overhead than Social-P2P because of more
messages. Because every copy of the query message can
be satisfied within a small number of hops, the overall
overheads of Social-P2P-3 and Social-P2P-5 are less than
PIS. As shown in Figures 17 (b) and (c), for the files with
lower popularity, the average query overhead in Social-
P2P and PROSA increases sharply, because the random
walk algorithm takes more hops to meet lower popu-
larity files. For Social-P2P-c, as there are c individual
copies sent out for file retrieval, the overhead increases
extremely fast. The query overhead in PIS exhibits a
very slight increase as popularity decreases because it
largely depends on the DHT. The routing overhead in
DHT increases over the file popularity due to the same
reason as in Figure 16.

We also note that the query overhead of Social-P2P-c is
not c times of that of Social-P2P. This is because Social-
P2P-c only has multiple messages during the random
walk process, while the query overhead refers to the total
number of query forwarding hops. Since the random
walk only take few hops, the overall query overhead
does not increase linearly in Social-P2P-c. All these ex-
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perimental results in Figure 17 verify the low overhead
of Social-P2P in file querying.

Maintenance overhead. Figure 18 shows the system
maintenance overhead of PIS, PROSA and Social-P2P
versus the network size. It shows that PIS has the
highest system maintenance overhead and it increases
sharply as network size increases. Its overhead is mainly
caused by the DHT structure maintenance, which leads
to a high overhead especially in churn. Social-P2P
constructs ambassadors into a DHT for inter-cluster
communication. Since the size of the DHT is small,
the ambassadors are relatively stable, and the other
nodes only need to maintain their connection with their
friends, Social-P2P only produces a slight maintenance
overhead. PROSA is also an unstructured P2P network.
Since each node must maintain several interest clusters,
PROSA generates higher maintenance overhead than
Social-P2P and its maintenance overhead increases
rapidly as the network size grows.

Overall system overhead. Figure 19 shows the overall
system overhead of PIS, PROSA and Social-P2P in a
network with 32,344 nodes. The figure shows that PIS
has the highest overall system overhead. Although the
query overhead of PIS for unpopular files is small, the
DHT maintenance overhead in PIS is very large, which
leads to an extremely high overhead. Since Social-P2P
has a lower query and system maintenance overhead, its
overall overhead is the lowest. Although the increasing
number of query copies lead to a higher overall system
overhead in Social-P2P, it is still less than PIS. PROSA
consumes a high overhead for cluster formation and
multi-cluster maintenance. Therefore, PROSA has the
second highest overall system overhead.

5.1.2 Evaluation of File Sharing Trustworthiness
In this section, we evaluated the querying trustworthi-
ness of Social-P2P in comparison with Pure-P2P and
EigenTrust. Social-P2P is evaluated with two mecha-
nisms: (1) The routing is not anonymous. Malicious
nodes do not send faulty files to their socially close
nodes, but they send faulty files to the requesters 3 hops
away in the social network. This mechanism is denoted
as “Social-P2P-NA”. (2) The routing is anonymous. Mali-
cious nodes are unconstrained and reply to every query
with a faulty file. This mechanism is denoted as “Social-
P2P”. In order to make the methods comparable, all
systems use the common-multi-interest clustering mech-
anism for file sharing. In the experiments, 500 nodes
out of the 32,344 nodes were randomly selected to act
as malicious nodes. A file requester that has received a
faulty file will not forward the file to other nodes.

Performance under malicious nodes. Figure 20 shows
the victimized probability over the simulation time. It

shows that in Pure-P2P, without any protection, a large
percentage of nodes constantly receive faulty files. In
EigenTrust, initially the victimized probability is very
large and then gradually decreases to 0. This is because
the nodes in EigenTrust do not have any reputation
initially, which leads to a high victimized probability.
However, as EigenTrust decreases the reputation of the
malicious nodes, other nodes no longer query files from
malicious nodes due to their low reputations. Therefore,
the victimized probability of EigenTrust decreases. In
Social-P2P-NA, the probability of the nodes receiving
faulty files is the lowest initially, because a very small
number of queries from socially distant nodes can be
received by the malicious nodes. Since trust relation-
ship adjustment can further reduce the probability of
forwarding query messages to the malicious nodes, its
victimized probability decreases. In Social-P2P, because
malicious nodes send faulty files to all requesters, the
victimized probability is initially high. Since the neigh-
bors of the malicious nodes can quickly stop forward-
ing messages to the malicious nodes, the victimized
probability decreases sharply. The results imply that if
the malicious nodes do not send faulty files to their
friends in order to avoid degrading their reputations
in real life, Social-P2P can provide higher file sharing
trustworthiness than EigenTrust. Even if all malicious
nodes are unconstrained and send faulty files to all
nodes in the system, the performance of Social-P2P is
still comparable to EigenTrust.

Performance under malicious and colluding nodes.
Malicious nodes may collude to enhance the reputations
of each other by rating each other highly. In this
experiment, we let 100 out of the previous 500 malicious
nodes to act as colluding nodes. Figure 21 shows that
Pure-P2P still suffers from high victimized probability
over time due to the same reason in Figure 20. For
EigenTrust, since the malicious nodes collude with
each other to enhance their reputations, the queries are
still forwarded to the colluders. Since nodes generate
different amounts of queries over time, the victimized
probability of nodes fluctuates over time. We can see that
EigenTrust produces much higher victimized probability
than Social-P2P and Social-P2P-NA. For both Social-P2P
and Social-P2P-NA system, the colluding group can be
identified within 1,000s. The reason is that although the
weights between the links among the colluders are not
reduced, the weights of the links to the colluders are
reduced. Therefore, in a short period of time, the entire
colluding group is isolated. Since in Social-P2P-NA, only
the socially distant nodes from malicious nodes receive
faulty files, the victimized probability of Social-P2P-NA
is much less than Social-P2P .
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Overall overhead. Figure 22 compares the overal-
l overhead of the Pure-P2P, Social-P2P, Social-P2P-NA
and EigenTrust. The figure shows that the overheads
of all systems increase as the network size increases
since they need to maintain more nodes and queries
are routed in a larger scale. The figure shows that Pure-
P2P has the lowest overhead because it has no repu-
tation management. EigenTrust incurs more overhead
than Social-P2P and Social-NA because it has doubled
overhead due to file sharing and trust management. The
DHT maintenance and reputation management system
leads to a high overhead. The nodes in Social-P2P and
Social-NA only need to locally adjust their link trust
weights to their neighbor nodes when receiving mis-
behavior notification messages. Therefore, the overhead
in Social-P2P is extremely small and is close to Pure-
P2P. Since Social-P2P and Social-P2P-NA have the same
trust management and routing mechanisms, their overall
overheads are the same. The experimental result verify
the advantages of dealing with efficient and trustworthy
file sharing simultaneously, and the low overhead of link
trust weight adjustment.

Server overhead. We measured the overhead
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Fig. 24. Server overhead.

for a server as the num-
ber of requests it handles
plus the number of rec-
ommendations it makes.
Querying frequency means
the probability that a node
generates a query in the
round of simulation. We
varied the querying fre-
quency from 0.4 to 0.8 in
the experiments. Figure 24 shows the server overload
versus the number of nodes and the querying frequency.
We see that the server overhead increases almost pro-
portionally with the querying frequency. This is because
when the querying frequency increases, more queries are
generated, leading to more overhead to the server. We
also see that the server overhead increases as the num-
ber of nodes increases, since more nodes lead to more
recommendations from the server and more queries that
need to be handled by the server.

5.2 Performance Evaluation on PlanetLab
We implemented a prototype of SocialP2P on PlanetLab

in order to show the performance of SocialP2P in the
real world environment. We chose 300 online nodes in
PlanetLab and chose the computer with the IP address
128.112.139.26 at Princeton University as the server. Since
the connection and bandwidth between the nodes vary
over time, we ran the client program on each PlanetLab
node twice at different times. The average results of each

experiment are presented in the paper. We randomly
selected 300 nodes from the trace data and mapped
the nodes to the PlanetLab nodes. We generated 3000
synthetic files according to the popularity distribution
shown in Figure 6 and randomly distributed these files
to the nodes whose interests match the file contents.
The duration of each experiment was set to 5000s.

5.2.1 Evaluation of File Sharing Efficiency
Figure 25 shows the percent of traffic through friends,
ambassadors and servers. We see that almost 80% of
the traffic goes through friends, 19% of the traffic goes
through ambassadors and only 1% through the server.
The result is consistent with Figure 15 due to the same
reasons.

Figure 26 plots the average query delays of nodes
versus file popularity. The figure shows that as the file
popularity increases, the average query delay of PROSA
and Social-P2P decreases while the average query delay
of PIS remains almost the same. The results of relative
performance between different systems are consistent
with Figure 16 due to the same reasons. We also find
that the absolute results on PlanetLab are larger than
those in simulation in Figure 16 since a message needs
a longer latency to travel between two nodes in the
PlanetLab real-world testbed.

Figure 27 shows the query overhead of Social-P2P, PIS
and PROSA versus file popularity. We see that the query
overhead of PIS is almost constant and those of PIS and
PROSA decrease as the file popularity increases. These
results are consistent with those in Figure 17 due to
the same reasons. We also find that the absolute results
on PlanetLab are smaller than those in simulation in
Figure 17 because the PlanetLab experiment has a much
smaller network scale.

Figure 28 plots the overall overhead of the system-
s versus node popularity. We see that PIS has much
higher overall overhead than Social-P2P and PROSA.
These results are consistent with the simulation results
in Figure 19 due to the same reasons. The lower absolute
overall overhead in the PlanetLab experiment is caused
by the smaller scale network in the test.
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5.2.2 Evaluation of File Trustworthiness
We evaluated the querying trustworthiness of Social-
P2P in comparison with Pure-P2P and EigenTrust on
PlanetLab. We randomly selected 15 nodes out of 300
nodes as malicious nodes. We evaluated Social-P2P in
two scenarios: (1) malicious nodes are not colluders,
and (2) malicious nodes are colluders. A node that has
received a faulty file will not forward the file to others.

Figure 29 shows the victimized probability of nodes
in the system over time. We see that Pure-P2P leads to
a high victimized probability over time. In contrast, the
victimized probability of the nodes in Social-P2P-NA,
Social-P2P and EigenTrust decreases over time. Social-
P2P-NA has a much smaller victimized probability than
EigenTrust and Social-P2P. Social-P2P can still reach the
comparable performance as EigenTrust. These relative
results are consistent with Figure 20 due to the same
reasons. Figure 30 shows the victimized probability
of nodes in different systems over time when the
malicious nodes are colluders. Similar to Figure 29, the
victimized probability of nodes in Pure-P2P is much
higher than all other systems. Social-P2P-NA, Social-P2P
and EigenTrust can gradually detect the malicious nodes
by trust management. The figure also shows that the
victimized probability of EigenTrust is always larger
than 0. For both Social-P2P and Social-P2P-NA, the
colluding malicious nodes can be effectively detected.
The victimized probability of Social-P2P-NA is much
less than Social-P2P. These results are consistent with
Figure 21 due to the same reasons. We notice that
the absolute results of the victimized probability in
the PlanetLab experiments are lower than those in
simulation because the PlanetLab experiments have
fewer malicious nodes than the simulation.

Figure 31 plots the system overall overhead of
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Fig. 31. System overhead.

different systems. The
overall overhead in
EigenTrust is the highest.
The overall overhead in
Pure-P2P is the smallest.
The system overall
overhead in Social-P2P
and Social-P2P-NA are
comparable to Pure-P2P.
We also see that Social-
P2P-NA produces smaller overhead than Social-P2P.
These relative results are consistent with Figure 22
due to the same reasons. We find that the PlanetLab
experiment has higher absolute results than simulation
because of its smaller scale of the network.

5.3 Evaluation of the CRT-based Enhanced Routing
Algorithm
We further evaluate the CRT-based enhanced routing

algorithm proposed in Section 4.2.3. Recall that we pro-
posed both a basic method and an advanced method. For
the basic method, we tested two variances, namely CRT1
and CRT2. They are different on the start time when
the content based routing table can guide file searching.
In detail, the content based routing table in CRT1 and
CRT2 starts to guide file searching since the beginning
of the experiment and since half of the experiment,

respectively. We also tested the performance of Social-
P2P without the CRT-based enhanced routing algorithm
and with the advanced method, which are denoted as
RandomWalk and Advanced-CRT, respectively.

In this test, since memory is not a bottleneck on
modern computers, we did not limit the size of the
CRT on each node. Considering the social network used
in our experiment is more tightly connected (i.e., from
Facebook), we set Nh = 3 in the Advanced-CRT, which
guides the file searching since the beginning of the
experiment. In order to maximally and directly show the
influence of different variances, we disabled the function
of periodically using random walk to discover better
routes mentioned in Section 4.2.3.

We focused on the simulation on PlanetSim for per-
formance evaluation but also provided some results
from the PlanetLab experiment. In the simulation, we
followed the same default setup of cluster structure
and file distribution as in the setting in Section 5.1.
In the PlanetLab experiment, we followed the settings
in Section 5.2. The results of simulation and PlanetLab
experiment are shown in Section 5.3.1 and Section 5.3.2,
respectively. In both experiments, since the experimental
results become stable after tens of seconds of running,
we only show the results of 100 cycles in the simulation
and 80s in the PlanetLab experiment below.

5.3.1 Results from PlanetSim Simulation
Routing Hops: We measured the number of rout-

ing hops from a file requester to the file holder for
each successful request. Figure 32(a) and 32(b) show
the total number and average number of routing hops
per request of successful requests in each cycle in the
experiments, respectively. We see that RandomWalk has
the most query hops in every second. CRT1 reduces
the query hops and produces the second most query
hops. CRT2 generates the same number of query hops
as RandomWalk in the first half of experiment and
the lowest number of query hops in the second half
of experiment. Advanced-CRT reduces the number of
query hops gradually to a very low level.

In RandomWalk, requests are forwarded blindly, lead-
ing to the most query hops. CRT1 reduces the hops of
RandomWalk due to guidance of CRTs. However, since it
uses the first sets of routes discovered through random
walk to guide subsequent requests, it cannot discover
better routes. Thus, CRT1 only slightly decreases the
number of query hops of RandomWalk. In CRT2, the
CRTs are well built in the first 50 seconds, so they can
guide route requests to file holders effectively, leading
to the lowest number of hops. In Advanced-CRT, routes
are only built on nearby nodes of file holders. Therefore,
nodes gradually learn the nearby contents to guide re-
quests, and the number of query hops reduces gradually
to a very low level. This result indicates that a small Nh
can ensure the file search efficiency.

Percentage of Routing Hops in Local/Foreign Clus-
ters: Recall that if a request cannot find the requested file
in a local cluster, it searches in the foreign clusters. We
measured the percentage of routing hops in local clusters
and foreign clusters of successful requests. The results
are shown in Figure 32(c) and Figure 32(d). Figure 32(c)
shows that RandomWalk has the lowest percentage of
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Fig. 32. Performance of different CRT-based enhanced routing algorithms in PlanetSim simulation.

routing hops in local clusters and CRT1 has the second
highest percentage. CRT2 has the same percentage as
RandomWalk in the first half of experiment and high
percentage in the second half of experiment. Advanced-
CRT increases the percentage gradually to the highest
level. Figure 32(d) exhibits the opposite trends since the
sum of the two percentages equals 1. RandomWalk has a
low percentage of hops in local clusters because requests
are always forwarded through the random walk, which
has a high probability to fail in the local cluster and
resort to the neighboring clusters. For CRT2, it is the
same as RandomWalk in the first half of experiment as
it does not use CRTs in file searching. In the second half
of experiment, the well-built CRTs lead requests to file
holders in the same cluster quickly, leading to a higher
percentage in local clusters. In CRT1 and Advanced-CRT,
their CRTs provide file locations within local clusters,
leading to a high percentage of hops in local clusters.

Costs of the Content Based Routing Tables: Fig-
ure 33(a) and 33(b) demonstrate the average size (i.e.,
total number of entries of all CRTs divided by the
total number of nodes) and the maintenance cost (i.e.,
the number of routing path information forwards) of
the CRTs in each cycle, respectively. We also include
RandomWalk in the figures for reference though it has
no cost on CRTs. Figure 33(a) shows that the average size
of CRTs follow CRT2>CRT1>Advanced-CRT. CRT2 pro-
duces the largest average CRT size due to two reasons.
First, it builds CRTs in all nodes along the full path of
each successful request. Second, it builds CRTs during
the first half of experiment. In the second half of test,
requests just follow the established CRTs and do not
discover new routes for existing routes, leading to nearly
stable average size of CRTs. In CRT1, once an entire
route from a node to a file holder is built along nodes
in the path, no new routes for the queried file will be
discovered. Thus, CRT1 produces smaller average CRT
size than CRT2. CRT1’ average size increases gradually
as routes for new files are added. For Advanced-CRT,
each node only needs to record the neighbors for the
nearby contents and no new routes for queried files will
be discovered, leading to the smallest CRT size.

Figure 33(b) shows that in each cycle, CRT1 always
generates a high maintenance cost, CRT2 has the highest
maintenance cost in the first half of the experiment and
a low maintenance cost thereafter, and Advanced-CRT
produces the lowest maintenance cost. CRT1 has high
maintenance cost because the path information of each
successful request is sent to all nodes on the path to
update the routes. In CRT2, the whole path information
is forwarded along all nodes in a path in the first half
of the test, leading to a high maintenance cost. In the
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Fig. 33. Costs of different CRT-based enhanced routing
algorithms in PlanetSim simulation.
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Fig. 34. Performance of different CRT-based enhanced
routing algorithms in PlanetLab experiment.
second half of the test, the CRTs are used in file searching
and path information is forwarded along nodes in a
shorter path, reducing the maintenance cost to a low
level. Advanced-CRT limits the number of nodes to
receive the path information to Nh = 3, generating the
lowest maintenance cost. With the above results, we con-
clude that Advanced-CRT leads to search performance
improvement comparable to CRT but at the lowest cost.

5.3.2 Results from Planetlab Experiment
Figures 34(a) and 34(b) show the average number

of routing hops and average size of the CRT tables in
the PlanetLab experiment. Note that results on other
metrics are not shown here due to page limit and the
fact that they show similar trends as the two metrics
.We see that the relationship between the performance
of four methods is consistent with those in PlanetSim
Simulation, i.e., Figures 32(b) and 33(a). The reasons are
also the same. Such results demonstrate the superiority
of the advanced-CRT algorithm.

We also see that the four methods have smaller av-
erage routing hops and average CRT table size in the
PlanetLab experiment than in the PlanetSim simulation.
This is because the PlanetLab experiment is on a small
scale with only 300 nodes. This further shows the scala-
bility of the proposed CRT based routing algorithm.

6 CONCLUSION
In this paper, driven by the observations from the trace

data of Facebook and Bittorrent file sharing system, we
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propose Social-P2P that synergistically integrates a social
network into a P2P network for efficient and trustworthy
file sharing. Taking advantage of the interest information
in the social network, the socially close nodes with
similar multi-interests are clustered together. Nodes are
connected with their friends within a cluster. Within
each cluster, trust-based routing algorithms are proposed
to forward a query message along trustworthy links,
enhancing file searching efficiency and trustworthiness.
Comparatively stable nodes from clusters form a DHT
for inter-cluster communication. Nodes also decrease the
trust weights of links to their neighbors which have high
probability to forward messages to misbehaving nodes.
The experimental results from trace driven simulations
and the prototype on PlanetLab demonstrate the effi-
ciency and trustworthiness of file sharing in Social-P2P
in comparison with other file sharing systems and trust
management systems. In our future work, we will ex-
ploit the Information Centric Networking (ICN) routing
to improve the file searching performance.
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